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Abstract

General stochastic integral systems Involving McShane Integrals

are studied. These systems include classes of stochastic Integro-

differential systems. Existence, uniqueness, and stability of solutions

to such systems are investigated using contractor theory. In particular,

the results yield frequency-type conditions for the stability of a class

of stochastic systems.
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1. Introduction

Stochastic equations are important in stochastic system theory as

well as in other areas of science and engineering [9]. Existence, unique-

ness, stability, and approximation of solutions to such equations have been

studied by several authors, for example, Bharucha-Reid [23, Blankenship [3].

Lee and Padgett [4), Padgett and lao [6], Padgett and Tsokos[7J , to name

a few. In this paper, a general stochastic integral system which includes

classes of stochastic integro-differential systems is studied. In particular,

this paper generalizes the work of Padgett and Tsokos [7) and of Rao and

Tsokos [8) on integro-differential systems and yields frequency-type conditions for

the stability of a class of stochastic systems, extending the work of

Blankenship (3).

Consider the stochastic integral system

xi(t;w) xio(w) + It hi(sx(s;w);w)ds

+ ft rij(t,r) [f Klij(-ts;N)f ij(sx(s;w))dz (s;w)dT

+ It rHt(t.r) K 2 1jt ,(nrW)f 2j(sx(s;w)dz (s;w)dzL(s;w)dr.

where

(i) t c R+ [0,-), a £ Q, the supporting set of a complete probability

measure space (1R,A,P);

+ n(ii) h:R x R x a0-R I (-,w);

(iii) rli j (t,T), r2ij,(tt) are continuous real-valued functions defined

for 0 S T t <

AV - - - - - - - - - - --L - - - -
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(iv) Kij(ts;w) and K21jt(ts;w) are real-valued functions defined

for 0 s s t < - and w e Q;

f ()+ U

(vi) z(t;w) with subscript is a real-valued stochastic process satis-

fying certain conditions; and

(vii) x(t;w) is a vector stochastic process with components

x I(t;w), t - 1,2,...,n.

The integrals involving the process z(s;w) in the equation (1.1) are

to be understood as McShane integrals [5]. Throughout the paper we consider

sums involving subscripts ij and I. For notational simplicity, we let

3 and 13 unless otherwise stated.
i-l JAL J ,tml

2. Preliminaries

Let (0,A,P) be a complete probability measure space. We shall assume

that there is a family of sub-o-algebras At,t a e,* such that for s 4 t,

A c A . We shall further assume with respect to equation (1.1) that5 ts

(HI) every process denoted by z(t;w) with subscript is a real-valued

stochastic process adapted to At , with almost surely (a.s.)

continuous sample functions,and satisfies the condition

Et(z(t;w) - z(s;w))rJA 1 S K(t-s), where 0 s s S t c -, r - 1,2,4

and K is some constant;

(H 2  xo(w) is measurable with respect to A and Is mean-square continuous;

(H3) ]K.Lj(t.s;w) and x2ijt(ts;w) are adapted to A. for all t a s and

are continuous as maps from A - ((t,s): 0 S as t 4 a) into L.,

.. .. . . . .. . .. .. . . . . . . "4. . , . .l . . , -. . . . . . . . . . . . . . . . . - -
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the set of all P-essentially bounded random variables (define the

norm IIIK(t~s;6)IIIj - P - ass supIK(t~s;w)1); and
:40

(H~ for any n-dimensional wan-square continuous process z(tpo) adapted

to At h(t~x(t;w);ia), fl:ij(t~x(t;w)) and f21 (t~x(t;i)) are adapted

to Atand are man-square continuous.

Under the above assumptions, It Is known (5,pp. 61-70, 138-139J that for

an n-dimensional mean-square continuous process x( a;i) adapted to A, the

McShane integrals in equation (1.1) exist, are adapted to At, anid satisfy the

following inequalities:

CE ~ +(J K i~~ts~ jf(t~xs;w)iij(B~;w))dz s1wif

c2 ft E(K,iJ(t~s;w)f,J(s~x(s;a))) 2  (2.1

and

E{ ft K ij(t~s;w)f i~(s~x(s;w))dai(s;w)dz1 (:;W)) (22

where c - 2K it + /1K, K Is the constant defined in (H1), and E denotes

expectation.

We shall now define some specific function spaces that will be used

In this study. Let y(t;w) be a second-order scalar process adapted to At

Denote

jf~tw)J 2 -((tc.W)) 2. (2.3)

p ~ * - . - - ------



Definition 2.1, C 5 C(R, *L(r,A*P)) wili denote the space of scalar mean-

square continuous functions y(t;w) adapted to At We shall Induce a topology

on C by the family of seni-norms

I1y(t;W)I1C- sup j1y(t;W)II(24
n tl [O,U] 2 .n 12,. .(.)

It Is known [9) that this topology is metrizable and the resulting metric

space is a Frtchet space.

Definition 2.2. C will denote the set of functions y(t;w) in C such that

sup I1y(t;i0112 <m

Then. C1 is a Banach space with norm 11i11I defined by

I1y(t;W)H1C - :uplly(t;w)112.

Definition 2.3. Let B and D be Banach spaces in C and let T be an operator

on C. Then the pair (B,D) Is said to be admissible with respect to T if TB cD .

Definition 2.4. A Banach space B in C is said to be stronger than C if

every sequence which converges In the norm of B also converges In the topology

of C.

Definition 2.5.. C " will denote the space of continuous real functions

u(t)(t2:O) with norm IlullI. defined by

H~ull. sup tUMtI.
tkO

Definition 2.6. Let z(t;w) be a vector process with components

x (tw)(i- 1,2,...,n). Then x(t;w) c Cnf (Bn or Dn) If and only if

x (t;.i) a C(B or D).
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The following lemma is well-known [9).

Lem a 2.1. Let T be a continuous linear operator on C. Let B and D be

Banach spaces stronger than C such that (B,D) is admissible with respect

to T. Then T is continuous from B to D.

We shall now introduce the concept of a bounded Integral vector con-

tractor for a set of vector valued functions. Let B and D be Banach spaces

stronger than C. Define the linear operators T, Tijv and Til on C by

(Ty)(t;w) - It y(s;w)ds, (2.5)

(Tijy)(t;w) = ft ri (t,T) I' Ki I (Ts;w)y(s;w)dz (s;w)dT (2.6)

(Tt 1Y)(t;w) - ft r 2 ij (t r) IT K2 ij (r.s;w)Y(s;w)dz (s;w)dz (s;w)d-.

(2.7)

Assume that the pair (B,D) is admissible with respect to each of the operators

T,Tij and T . Let h(t,x;w), fltl(tx;w), and f 2ijt(tx;w) be real-valued

functions such that h(t,x(t;w) ;), f lJ (tx(t;w) ;w), f21jt(t.x(t;w) ;w) are

in B whenever x(t;w) Dn. Let f denote the nx p matrix with elements fliJ

and let f2 denote the n x p x p three-dimensional matrix with elements f

Definition 2.7. The set of functions (h.f lf 2) is said to have a bounded

integral vector contractor (r,rl.F2) with respect to (BnDn) if

(1) r - r(t,x) is a bounded linear operator from D to B for each t C

and x e Rn . The function IIr(t,x)Ij is continuous in (t,x) and

jIr(tx)jj s Q(t) where Q(t) is a bounded continuous function;

(2) r is an (n xp) matrix of operators rli (t.x) such that for each

t a e and x c Rn, rlij (tx) is a bounded linear operator from

D to B. The function lirlil(tx)jI is continuous In (t,x) and

-- i
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ll Ir11j(t.x)II S Q1 (t), where Q I(t) Is bounded and continuous;

(3) r 2 is a three-dimensional matrix of operators r 21 I t(t~x) such that

for each t e e , x C R, r 21jI (t.x) is a bounded linear operator

from D to B. The function Ijr 21JI(tx)II is continuous in (t,x)

and lr (t ,X)II 5 Q (t) where Q (t) 13 bounded and continuous;

and

(4) for x(t;w), y(t;w) e9 DP the following inequalities hold:

I h'(t,x(t;w) + y(t-.w) + (Try)(t;w)

+ (ITl1jr11j )Y)(t;w)

+ T( T21jI r 2±)Y)(t;W);W)jot

-h(t~x(t;w);w) - (ryI) (t;w) 113; al ctIII Dn

I1f1ij (t~x(t;w) + y(t;w) + (Try)(t;w)

+ (( r TlrlJ)Y)(t;w))

D

tIf 2ijI (t~x(t;w) + y(t;w) + (Try)(t;w)

+ (I T113rl1 jY)(t;a)

+ TI T21 1r 21 jty)(t;wd))
j tL

f f2 1 (t~x(tw)) -(r~i~i(~)I~I±i~ln

21ji21jti) (~w)I IBS Q2UZ' Y'

_________________________________________DP
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where Try, (IT lijrlij)Y , and (I T21Jjr21jz)y are n-vectors withJ j~j

components Try i, (lTlijrlij)y,,and (I T2 ji r21jL)Yi, respectively.

Let a denote n-vector with components ci, *I the nx p matrix of

constants alij and a 2  the three-dimensional n x p x p matrix of

constants a21j1. Then the triplet (a,a1,a2) will be called the

vector of contractor constants.

We remark that from equation (2.5) and the assumption (H3) on KI and 2

and from the inequalities (2.1) and (2.2), it is readily demonstrated that

the operator T, T1Ij. and T2ijL are continuous on C. Hence, if a pair of

spaces (B,D) are both stronger than C and admissible with respect to T,

Tli j and T 21jl it follows from Lemma 2.1 that these are bounded linear

operators from B to D. Therefore, there are constants k, k l j and k21ji such

that

Il11H S k, (2.8)

lITlij1l r kzl j , and (2.9)

JIT 21j111 S k2 1ji (2.10)

Definition 2.8. The random function x(t;w) will be called a solution of the

equation (1.1) if x(t;w) e Cn and satisfies (1.1) a.s.

3. Existence of Solutions

In this section the concept of a bounded integral vector contractor, as

defined in the previous section, will be used to obtain the existence and

uniqueness of solutions of the general stochastic integral system (1.1).

The conditions under which the existence and uniqueness will be proven are

7 --



very general, and as a specific application, Thenrem 3.3 will be used in

Section 4 to study stability of stochastic systems under frequency-type

conditions.

In the following theorems, B and D viii denote Banach spaces stronger

than C and Bn and D will be the corresponding product spaces.

Theorem 3.1 Let the system (1.1) satisfy the following conditions:

(1) x0 (W) E DP;

(2) the pair (B,D) is admissible with respect to each of the

operators T, Tlij and T21ji;

(3) the set of functions (h,f,,f2) has a bounded integral vector

contractor (r,r1 ,r2) with the vector of contractor constants

(M,CL1,"2) •

Then, if kti + klijali j + k 2 k2j 21j< 1, there exists a solution to

equation (1.1) in Dn.

Proof. Consider the sequence {x(m )) defined by

xi(m+l) (t;W) - X( M) ( t ; ) - [y(m)(t;w) + (Try(M))(t;W)

+ (Tlijrllj Y, )(t;W)

+ J (T21j yi )(t;W),
2J

m - 0,1,2,...; - = 1,2,...,n, (3.1)

where

(.)(t;) - x - (t;W) - xio(w)

- (Th(s,x(M ) (s;w);w))(t;w)

'L j
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(I TL Tifi (Bx (*;w))) (t;(O)

I T 21jf UI(s,x~m (u;W))(t;W), (3.2)

and

(in ( 1 x) (a (n ). O P

It is clear from the definition of the operators r, rljand r 1Land

from the admissibility of (B,D) with respect to T, Ti and T ithat

x (m) , y (m * P We shall now show that j y'I (1) D1.,0  as m . From

equations (3.1) and (3.2), we have

y (~l (t;W) -(Th(s,x~m (s;w);w))(t;w)

(in

" J (T 2 f (s,x (s~w))(t;w)

"j (21i f 21ji sxm(sw)t*)

- (Try~n) )(t;W)

ii

- I(T r y

- ( ) r m) tW

- Th(s,x m(s;w) -y m(s;W)

- (Try(in))(B;w) - I(T 111rij y~))(8;w)

-(iT

-IT ±f 1 . (s~x(M)(S;W) - y (U(6;W)
j i

t~ '7-
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- (Try ")(u;w) - [ITijr ijy )

-((

jo T I 1jty(

21JL f (s;W) - ()(s;W)

(Trylm))(s;w) - [ITt j rl jy J(w)

- (j T21jLr21jtLy , (s;w). (3.3)

Equation (3.3) together with equations (2.8) and (2.9) enable us to conclude

I11 I 1 ' km + kl1 a11ik D iJ, o21je~lil D j.1 m

l~ I MII, (3.4)

where at < 1. It therefore f ollows that l y )lD 0 as a+--. Also

from equation (2.1) we have

Ml )  ('1 l()l+ kllry[")ll
I N xt im 1 D S l im 1 D i

+ Ik 1j~ i 21l(m)II

9 [U + Q*k + Q, k kltJ

k Ill (a) 1

Q2 IiJ Ije] l iD (3.5)
J,,t

where Q 'Qj, 1 =1,2 are upper bounds on Q(t), Qt(t), I -l2
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It follows from (3.4) and (3.5) that the sequence (x ") to a Cauchy

sequence in D. Hence, there exists an xc D such that Ila x( )  x

In view of the continuity of operators and the functions involved in equation

(3.2), it follows that xI is a solution of equation (1.1) and this completes

the proof.

We next prove a theorem concerning the uniqueness of solutions of

equation (1.1).

Theorem 3.2. Let the hypotheses of Theorem 3.2 be satisfied. Assume in

addition that the linear integral system

n t(t;W) - YI(t;W)

+ I It r i 3 (t,!) I' K1i (ts;w)(rl j(sx(s;w))Yi(s.w)dz (s;w)dTa

+ t r 2 I,(t.r) IO K21jt(t.s;w)r21j,(S.z(;WD,(s;w)dzj(;w)dzi(;w)dT
j ,0

(3.6)

has a solution yi(t;w) in D for every x(t;w) ( Dn and n (t;w) a D. Then

equation (1.1) has a unique solution x(t;w)D

Proof. Let x)(t;w) and x (t;w) be two solutions in D of (1.1) corresponding(1) ~~(2) 1 62.wueTe
to two initial random variables (1) and (2) - l,2,... ,. Then

(1) (2) (1) (2) +(j hl(s ;.).)xi (;W) x 1W) - xi0(W) - x . 0 ) +

- h (s,x(2) (s;w);w)JdsI'd

+ " fI i j (t.r) I" K) )(s;)(f 1 ('xd S;)

f ( (;~) ds (@;w)dr
LIi
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t (1)+ r,(t.-) ITo k 2  ,(.s-,cw)cf 2  (G. (8;0))

- f2 1J(s.x(2) (@;w)) Jdzj (s;w)ds (s;w)dT

± - 1,2,...,n. (3.7)

Letting nI(S;w) - x I)(t;1 ) - (2)(t;w) we can conclude from the fact that

(3.6) has a solution for every z and x. that there is a y1 (t;w) t D such that

x (1)(t;w) .z (2) (t;W) + yi(t;W)

+ I r1ij(t,
T ) I K.11 T,s;w)(r(.X (2)( s;w)Y1) (s;w)ds (s;w)dr

+ I r2i (t,) I X2j (T.s;)(r2 lsBxt2)(O;W))Ws;d (;w)d 1 (s;w)d'r.

(3.8)

From (3.7) and (3.8), and upon using the contractor condition and siuplifying,

we obtain

IIy(t;')oi . - x 2I(w)1ID

+ (ak + *lsjklij + k *2ijikijt)IIYi(t;W)IID •

frou which we get

Uyl! s ( k - lijklij  kt uik2J)- x I1 39 M-0

11yi11 J.1 1j&2j '

(3.9)

If { 2 it follows that Y 1  0, which in viw of (3.8) Implies
1,0 1,0

that x(
l) - (2)

We now consider the following special case of the equation (1.1) because

of its usefulness in applications:

oil
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3x(t;W) b (t;W) + It T (t 'W) r, K(T.U;U)f (W.z(mtW))dW dv

+ It r 2 (t1) jrO K(rU;W)f i (.(Uu))d (u;)ds 1 uur

00

+Tx(tea t J~ (t.v) AJ k(-r.u;w)f (a.uu)d s uwr.(.N&

and let T and T be as defined In equations (2.6) ad (2.7).Tj2j I
respectively, with I - 1, r~j r1 * 2 1 ar K K a 2

K Also, let C* be a subspace of the Sanach space C.
2jA

Theorem 3.3. Assum the following:

(1) h(t;w) C.

(it) The pair (C1,C) Is adssible with respect to each of the

operators T0*T1j. and T21

(iii) There are positive constants c 0 Oc s ad c 2j1 such that the

operator (I - c6T0) io a.&. Invertible an C and the operator

(1- UI- c0T0)'i(I c1JT1 J + 1 c2JA T 2JI)) io Invertible as
j 0 i91

amap from C Ito CI.

If 1j(t .u4-V) f f1 (t~u) - c I jVI S Y1JIVI . and

1f2J1 (t,u~i) -f2JA (t~u) - c 2J~vI 1 y2JAIVI

for u'v a R where Y01 Y1j.amd yf2j are positives cemtas.
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Then, if

I11a - (I - c0 T0)1( C1jT~j + j c 2JIT 2 )1)l

-vl( c0T0)_1 roll + I yijll(I - COTO)-" Tl Ii

+'I'2j'~ -j cT)'T2iII 4 1,

the equation (3.9) ban a unique solution In such that

sup I1(tgw)112 S N6 up Ilb(t;*)112.tko tko

Pro.Using the invertibility of the operator (I -c 0T0),, equation (3.10)

can be writ ten as

z(t;W) G (t;") + IYa 0(t~z(t;o))

+ f 2I f1 f1 (tx(t;W))

where
fi(t"W) * (I - c0T0)

4h(tjw)9

f 0(t~x) 0 f(z.x) - cez*

*j (I - COV0) TIP

From condition (Iv) of this theeremg It is esily verified that with the

choice



r0

r l -I 11  11 " c2Jt

the set of functions (f0,fljf 2jt) has a vector of contractor constants

Go YO ' Gl = Y Ylj- and a2Jr Y ¥ 2j., where

Y 11( T- i ce 1iS- C 2J)-l

The existence of a solution now follows from Theorem 3.1.

To prove the uniqueness, we note that for the choice of contractors

given by equations (3.12), the equality

I- - l - f c (3.13)

holds. Thus, the invertibility of the operator (I - c - c2 1 t  2
I j ljj JA , I2

implies that the equation

,nit;w) - U - lj T j c - 2J9 2jtlylt;w)

has a unique solution for each I a C1. Therefore, by Theorem 3.2 and from

equation (3.9) the solution is unique and satisfies the condition

DW Ilxz(t;)11 2 SM sup Ith(t;w)l1 2.t O taO

4. Aselication to the Stability of Stochgetic: Systm

In this section we shall discuss the stability of solutions of a special
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class of feedback systems vith convolution kernels, sector-bounded nonlinear-

itfes, and disturbances comprised of a Brownian motion and a Poisson point

process. Using the contractor theory, we shall obtain sufficient conditions

under which the feedback system Is mean-square stable E3]. The conditions

involve the sector parameters of the nonlinearities, the parameters of the

stochastic disturbances and the Laplace transform of the kernels.

Consider the feedback system

x(t;w) - h(t;w) - It ro(t-T) 0 Ko(T-U)fo(ux(u;w))du dr

- It r (t-r) T K (r-u)f (u,x(u;w))dz (u;w)dT

- It r (t-r) IT K(T-u)f (u,s(u,))da(u;w)di. (4.1)

The process a1 (t;w) and a2 (t;w) in (4.1) satisfy:

(i) a1(t;w) is a random process such that s(O;W) - 0 and

z(t;a) - I (e;W) - I v(r;w)Ctd(r;w)- U(i-;w)).

The random function v(r;w) has mean va and variance a2 and,

corresponding to any finite set 1l9... '.k the random variables

v(TI;w) are independent, and N(t;w) is a Poisson process with

parameter I (see (5), page 86). Furthermore, v(t;w) is lade-

pendent of all increments x(t;*) - N(s;w).

(11) 82 (t u) is a standard Brownim motion process.

Under the above assumptions the following results are known [5]:

Z it f(t,)ds (T; ) -0; Z(I f,.T)da ,.,)) 2 . I f,'(t,)d ;

(4.2)
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Zt f d(t)d (4.3)

E(It f(t,r)d[,(-t;W) - A'rJ), . it i fl(t.T)1(u0 + a2)d,. (4.4)

We shall further assume that a and a2 are independent and h is admissible

and non-anticipating [3]. The functions r,, K1, and f 1 (i - 0,1,2) are

all continuous. The nonlinearities fI are sector-bounded and satisfy the

condition

if (t.u + v) - f (u) - c v s b2- Iv,

where c At (1 - 0,1.2), u,v c R.

In what follows, we shall denote the Laplace transform of a function

r(t) by r() and the convolution of two functions f and 8 by f * S. We will

now present a stability theorem for the system (4.1).

Theorem 4.1 Assume

(1) (_1 0 £) u O()
Re a - 60

where Rt(s) - (s) + ialr1 (s)L 1 (s)]

and 1 0 3 0 Is such that

a O (rro(t)Ko(t) + jr,(t)K1 (t)I)dt '-.

(I) Let R(s) (1a) - o()l;(), I - 1 2 and

(,) . X(112 + 02)[ (1 ()I 1 ( ) 2 (S))

so that ( 2-- i 0 ) U il(s).
a r+;.y 1 0 ) j D sa-I 0



18 r 1

a2+b-(iii) sup I(1 -- ;(,))'li
s>i0

x ;up f J(fto )r (  + J E 01 (V + iQ(" 0)r* (Ui +t

+ sup H(s) t  2

0 0 0 1

and sup W(s) > 2 2
sz-00 a +b

(iv) h e Cie

Then there exists a unique solution x(t;w) of (4.1) such that

sup J'x(t;w)JJ 2  S M sup jlh(t;w)11 2
t2O tkO

for some M ' 0.

Before we proceed with the proof of the theorem, we shall first prove

the following lemma.

Lemma 4.1. Let T. and T2 be operators on C defined by

v(t) - 0 (r1 * K1 )2 (t-)T)dT, (4.5)

T; v(t) - J0 (r2 * K2)2 (t-r0v(-)d-. (4.6)

Let T1 and T be operators on C1 defined by
deie by
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T1x(t;w) - f r (t-r) IT K1 (T-u)x(u;w)d(z1 (u;w) - vX)du. (4.7)

T x~t;W) t r~ r(t-r) J K(r-u)x(u;w)dz (u;w)dr, (4.8)

where rl,r2 ,Kl,12 ,z1 and z2 are as in equation (4.1). Assum that there

exist constants cc 2 > 0 such that 11clT 1  c > 1 and

(I c2T c 2 T2)is invertible. Then the operator (I c2T) is
1~ ~ ~ 1 T 22invertible as a map from C 1 to C I (C =Range of T1 I T2 ) and

- c T )111 2 5 1,(, 2T c -
l1 2 2 11 22

Proof. The assumption that I1clT1 + c2T2I( > 1 implies that for some

X(t) > 1, there is a y e C1 such that

ll(c T + c2T2)Y 112 " x(t)ll 112. (4.9)

1 22)*12 ~t1*1 1 *.

Let A - Iy*i [(cl T1 + c2T2)Y*112 - X(t)lly*112). (4.10)

Let x,y e C such that y - x + clTIy + c2T2y. (4.11)

Then

Ilylty 12  ixII2 2 TlyI IIc T 2  + 21ly 2 IcllTzy + c2T2Y 2]",,2 ll2 1 ~zl 2  2 c22YI 2  Y1[22I2]

(4.12)

Choose y a A such that IlY*1 2- IlYll2 . Then

2

22 2iil 2 cTy* IC2T2y112

+ 2I1ciTiy* +cT y1 2(A(t)J 1l

S 11I1II+ (C * +2 T j y1 (4.13)

2 1 .. 1-2 2
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Hence,
IyI11 2 11(1 - C2 c2T*1 "I 11x1 2  (4.14)

2c 1T1  2 22' 2

Equations (4.11) and (4.14) allow us to conclude that

-1 2 2 2 I1
11(i - cIT 1 - C2 T2)-111 11 - T - c2* 1

To show that (I - ciT c T has an inverse, we note that the operator1 1 2T2)

is an onto map from C to C*. Therefore, we have only shown that it is
1 1

one-to-one. Let y C C* such that y f (1 - C T - c2T )x1  (1 - - c2T2)x
1 1 . c2T2) c1T1  c2T2) 2

for some x 0 x . Then1 2

2 2* 2* 2(.5E(xx 2 ) [CT 1 + c2T2) E(x1-X2) - 0. (4.15)

2* 2*
From the invertibility of the operator (I - c2T1 - c2T2) it follows that

x, M x2 almost surely, which shows that the map (I - C1T 1 - c2T2  has an

inverse. /I

Proof of Theorem 4.1. Rewrite equation (4.1) as

1 3
x(t;w) h(t;w) + I Tfi(tx(t;w)) + f ifi(tx(t;W)), (4.16)

t 0 t=2

where

=i (I- cT O - c1-h
U 0 c T1) h,

T- a (I - c T0 - cT 1 ) TI , -= 0,1,2,3

=(tx) f (t,x) - c x , I - 0,1, and c -+b (4.17)

The operators TO,T 2 and T3 are defined as in Theorem 3.3 (with kernels

being convolution) and TI Is defined by
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T x(t;w) " t0 r (t--T) I' K (T-u)x(u;w)Ij dudT. (4.18)

The existence of (I - cT0 - cT1)
- 1 follows from assumption (i) of the

theorem [3].

We shall now show that the assumptions of Theorem 4.1 imply those of

Theorem 3.3. Condition (ii) of the theorem implies that the inverse of

(I c2 TI 2 *
(I - c T2 ) exists [3]. Therefore, from Le-ma 4.1 it follows that

the operator (I - c(I - c(T0+T1))- (T1+T2)) is invertible. Further,

condition (1ii) [3) and Lemma 4.1 together imply that

(b-a) II(I - c(I - c(T0 T ))-l(T, T2))-11 I
20

x [11(I - c(T 0+T1 )) (To+T1 )II

+ 1(I - c(T0+T1))-(T 1+T 2)I1] < 1

The other conditions are easily verified and the conclusion follows from

Theorem 3.3. * ///

J i
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